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The question of stability is one of the basic questions in the theory of oscillations. The
in#uence of external forces or parametric perturbation of the system may lead to di!erent
resonant phenomena [1, 2]. If the parameters of the system are #uctuating, the
corresponding resonance is called a stochastic parametric resonance (SPR) [2}4]. It has to
be distinguished from the phenomenon described in reference [5], where external forces
cause resonant transitions between the neighboring potential wells. SPR manifests itself in
the increase of the moments of higher orders with time, while the mean values of the system
remain "nite. Then the question of stability of the corresponding oscillations is an
important one in the investigation of di!erent technical devices. It is known that relaxation
(linear friction) in the system leads to the appearance of the lower boundary for the value of
#uctuation intensity necessary for a rise of SPR [3, 4]. Non-linear friction (velocity times
the square of the co-ordinate) stabilizes SPR [6, 7], that can be easily understood by simple
consideration of energy conservation.

It is of particular interest to consider the e!ect of weak non-linearity on SPR, because due
to the increase of #uctuations in a real system there appears interaction between di!erent
harmonics, described by weak non-linearity. Non-linear oscillations under deterministic
and stochastic excitations were studied recently [1]. We, in distinction from reference [1],
consider the following equation with a #uctuating frequency:

d2x

dt2
#u2

0
(1#z(t))x#jx3"0, (1)

where z(t) } is a Gaussian process with zero mean and small intensity p2 (p2@1),
j@u2

0
Sx2T~1 (generalization to non-Gaussian processes will be considered elsewhere).

Non-linearity leads to a shift of the basic frequency of oscillations. The latter causes the
change in the order of resonance. Many technical devices have a "nite bandwidth. It is
therefore interesting to consider a random process z(t) with the following correlation:

Sz(t)z(t)T"p2
sinu(t!t)

u(t!t)
, (2)

coresponding to a rectangular spectrum with an edge at frequency u.
If the double frequency of the system 2u

0
is much less than the edge of the device

spectrum u, then its change due to a weak non-linearity cannot lead to stabilization of SPR.
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This case actually corresponds to a white-noise process, when for any system frequency
there exists a corresponding harmonic of z(t) excluding the possibility of stabilization. In the
other limiting case (2u

0
Au) there is no resonance. Therefore, the most essential in#uence of

weak non-linearity on a system takes place, when a shift e"u!2u
0
between the spectrum

edge and the double frequency of the system has a small value of the same order as
non-linearity eu

0
&jSx2T. This case is considered below.

Using equation (1) one obtains equations for the moments of the second order:

d

dt
Sx2T"2 SxyT, (3)

d

dt
SxyT"Sy2T!u2

0
Sx2T!j Sx4T!u2

0
Sz (t)x2T, (4)

d

dt
Sy2T"!2u2

0
SxyT!2j Sx3yT!2u2

0
Sz (t)xyT, (5)

where y"x5 . To close this system of equations, we make use of Furutsu}Novikov formulae
[2], Sz (t)x2T and present as follows:

Sz(t)x2T"2 P
t

0

p2
sin [(2u

0
#e) (t!q)]

(2u
0
#e) (t!q)

(

dx(t)

dz(q)
x(t)'dq. (6)

The variational derivative in equation (4) is calculated by the standard procedure [2]
from equation (1) (neglecting j and p terms)

dx(t)

dz (q)
"u

0
x (q) sin [u

0
(q!t)],

dy(t)

dz(q)
"!u2

0
x(q) cos [u

0
(q!t)]. (7)

In the adiabatic approximation x(q) can be expressed in terms of x(t) and y(t)

x(q)"x(t)cos [u
0
(q!t)#/]#(1/u

0
)y(t) sin [u

0
(q!t)#/], (8)

where /"/ (q!t) is a slow varying phase (/Q &e) due to non-linearity, /(0)"0.
By the use of equations (7), (8) and of Gaussian approximation Sx4T"3Sx2T, the system

of equations (3)}(5) is replaced by the third order di!erential equation

d3

dt3
Sx2T#4u2

0
F
2
(t)

d2

dt2
Sx2T#4u2

0G1#u
0
F
1
(t)#

1

2
FQ
2
(t)H

d

dt
Sx2T#18jSx2T

#4u3
0
Sx2TMFQ

1
(t)#uF

2
(t)!u

0
F
3
(t)N"0, (9)

where

F
1
(t)"!p2 P

t

0

sin [(2u
0
#e)q] sinu

0
q cos [u

0
q#/]

(2u
0
#e)q

dq, (10)

F
21

(t)"p2 P
t

0

sin [(2u
0
#e)q] sinu

0
q sin [u

0
q#/]

(2u
0
#e)q

dq, (11)

F
3
(t)"p2 P

t

0

sin [(2u
0
#e)q] cosu

0
q cos [u

0
q#/]

(2u
0
#e)q

dq. (12)
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Assuming that in the absence of non-linearity and #uctuations, the system oscillates
harmonically, we are looking for a solution of a perturbed equation (9) in the form

Sx2T"C
1
#C

2
cos (2u

0
t#2/)#p2x

1
(t), (13)

where C
1
, C

2
and / are slow functions of time (CQ

1
/C

1
, CQ

2
/C

2
, /Q //&O (p2u

0
)), and x

1
(t) is

a correction due to a weak non-linearity and time dependence of frequency. This expression
corresponds to a standard Bogolubov}Krylov procedure [8, 9]. The condition of absence of
resonant terms (periodic with frequency 2u

0
) in the external force in equation for x

1
(t) leads

to the following equations:

2CQ
2
#3u2

0
F
2
C

2
#u2

0
F
3
C

2
!u

0
FQ
1
"0, (14)

4/Q !2u2
0
F
1
!u

0
FQ
2
!9ju~1

0
C

1
"0, (15)

CQ
1
#u

0
FQ
1
C

1
#u2

0
(F

2
!F

3
)C

1
"0. (16)

The equations above describe the solution of equation (9) adequately under conditions
C

1,2
@u

0
CQ

1,2,
/G@u

0
/Q , which are satis"ed if FQ

i
&o (p2). This implies limitations for times at

which equations (9)} (11) are justi"ed. The de"nition of F
1,2,3

leads to the following
condition (1/2)u~1

0
@t[(p2u

0
)~1. As it is shown below, this time domain is of interest for

the stabilization of SPR.
Using equation (11) one "nds

C
1
"C

10
exp M(1/4)u

0
p2[t MSi(4u

0
t)!Si (/Q !e)t)N#(1/4u

0
) (cos 4u

0
t!1)

!(/Q !e)~1 (cos [(/Q !e)t], (17)

where C
10

,C
1
(t"0), Si(x) is an integral sinus, and /Q is found from equation (15). If /Q 'e,

then the stabilization of SPR takes place at times t&(p2u
0
)~1. Indeed, it is obvious from

equation (17), that the maximal value of the expression in the exponent is achieved (up to
/G terms) when both integral sinuses saturate and become equal. It means that for all allowed
times C

1
is less or of the order

C
10

expG
p2u

0
2(/Q !e)H. (18)

Therefore, we just need to satisfy the condition /Q !eZp2u
0

(necessary for the saturation
of the second integral sinus in equation (12). As it is easy to show from equation (15), it is
satis"ed for

jZ(4/9)u2
0
C~1

10
(p2#eu~1

0
#(1/16)p2 ln (4p~2)). (19)

It follows from equation (14) that C
2

decays with time as

C
2
"C

20
exp M!(1/2)u

0 P (3F
2
(q)#F

3
(q)) dqN, (20)

F
2,3

being positive by de"nition at any t.
We, therefore, conclude that the weak non-linearity could lead to stabilization of SPR, if

double eigenfrequency of the system 2u
0

is close to the spectrum edge of the #uctuations u.
The value of non-linearity j, necessary for stabilization, is proportional to the frequency
shift e"u!2u

0
and to the intensity of #uctuations p2.
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